Ez messze van mint Makó Jeruzsálemtől

... goes the Hungarian saying. But how much is it exactly?

So, if we take the coordinates of the center of the two cities on the geoid surface and use the Haversine formula, the secret is revealed.

Let's see:

  • Makó: 46.2181° N, 20.4742° E
  • Jerusalem: 31.7683° N, 35.2137° E

The Haversine formula:

a=sin2(Δϕ2)+cos(ϕ1)cos(ϕ2)sin2(Δλ2)a = \sin^2\left(\frac{\Delta \phi}{2}\right) + \cos(\phi_1) \cdot \cos(\phi_2) \cdot \sin^2\left(\frac{\Delta \lambda}{2}\right)c=2atan2(a,1a)c = 2 \cdot \text{atan2}\left(\sqrt{a}, \sqrt{1 - a}\right)
d=Rc

Where:

  • ϕ1,ϕ2\phi_1, \phi_2: Latitudes of Makó and Jerusalem in radians
  • λ1,λ2\lambda_1, \lambda_2: Longitudes of Makó and Jerusalem in radians
  • Δϕ=ϕ2ϕ1\Delta \phi = \phi_2 - \phi_1
  • Δλ=λ2λ1\Delta \lambda = \lambda_2 - \lambda_1
  • RR: Earth's radius (mean radius ≈ 6,371 km)
  • dd: The distance between the two points
So the result: The geoid surface distance between Makó and Jerusalem, calculated using the Haversine formula, is approximately 2043.31 kilometers. This result represents the shortest path between the two locations over the Earth's surface.

Megjegyzések